Algebra for RRB Exams
Important Algebraic Identities
Square Formulas
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Cube Formulas
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
Special Identity
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
If a + b + c = 0, then a³ + b³ + c³ = 3abc
Polynomials & Quadratic Equations
Quadratic Equation: ax² + bx + c = 0
- • Roots (α, β): Values of x that satisfy the equation
- • Sum of roots (α + β): -b/a
- • Product of roots (αβ): c/a
- • Discriminant (D): b² - 4ac
Nature of Roots
- • D > 0: Real and distinct roots
- • D = 0: Real and equal roots
- • D < 0: Imaginary roots
Linear Equations
System of Equations
a₁x + b₁y + c₁ = 0
a₂x + b₂y + c₂ = 0
- • Unique Solution (Intersecting Lines): a₁/a₂ ≠ b₁/b₂
- • No Solution (Parallel Lines): a₁/a₂ = b₁/b₂ ≠ c₁/c₂
- • Infinite Solutions (Coincident Lines): a₁/a₂ = b₁/b₂ = c₁/c₂
Progressions
Arithmetic Progression (AP)
- • nth term (Tn): a + (n-1)d
- • Sum of n terms (Sn): n/2 [2a + (n-1)d] OR n/2 [a + l]
- • a = first term, d = common difference, l = last term
Geometric Progression (GP)
- • nth term (Tn): arn-1
- • Sum of n terms (Sn): a(rn - 1) / (r - 1) [if r > 1]
- • Sum of infinite GP: a / (1 - r) [if |r| < 1]
Test Your Knowledge
30 random questions • 1 minute per question
Question 1 of 30
60s
Score: 0
🎉
Score: /
Percentage: %